The S4 Voltage Sensor Packs Against the Pore Domain in the KAT1 Voltage-Gated Potassium Channel
نویسندگان
چکیده
In voltage-gated ion channels, the S4 transmembrane segment responds to changes in membrane potential and controls channel opening. The local environment of S4 is still unknown, even regarding the basic question as to whether S4 is close to the pore domain. Relying on the ability of functional KAT1 channels to rescue potassium (K+) transport-deficient yeast, we have performed an unbiased mutagenesis screen aimed at determining whether S4 packs against S5 of the pore domain. Starting with semilethal mutations of surface-exposed S5 residues of the KAT1 pore domain, we have screened randomly mutagenized libraries of S4 or S1-S3 for second-site suppressors. Our study identifies two S4 residues that interact in a highly specific manner with two S5 residues in the middle of the membrane-spanning regions, supporting a model in which the S4 voltage sensor packs against the pore domain in the hyperpolarized, or "down," state of S4.
منابع مشابه
Molecular Coupling between Voltage Sensor and Pore Opening in the Arabidopsis Inward Rectifier K+ Channel KAT1
Animal and plant voltage-gated ion channels share a common architecture. They are made up of four subunits and the positive charges on helical S4 segments of the protein in animal K+ channels are the main voltage-sensing elements. The KAT1 channel cloned from Arabidopsis thaliana, despite its structural similarity to animal outward rectifier K+ channels is, however, an inward rectifier. Here we...
متن کاملMolecular mechanism of voltage sensor movements in a potassium channel.
Voltage-gated potassium channels are six-transmembrane (S1-S6) proteins that form a central pore domain (4 x S5-S6) surrounded by four voltage sensor domains (S1-S4), which detect changes in membrane voltage and control pore opening. Upon depolarization, the S4 segments move outward carrying charged residues across the membrane field, thereby leading to the opening of the pore. The mechanism of...
متن کاملContribution of hydrophobic and electrostatic interactions to the membrane integration of the Shaker K+ channel voltage sensor domain.
Membrane-embedded voltage-sensor domains in voltage-dependent potassium channels (K(v) channels) contain an impressive number of charged residues. How can such highly charged protein domains be efficiently inserted into biological membranes? In the plant K(v) channel KAT1, the S2, S3, and S4 transmembrane helices insert cooperatively, because the S3, S4, and S3-S4 segments do not have any membr...
متن کاملVoltage-dependent Gating of Single Wild-Type and S4 Mutant KAT1 Inward Rectifier Potassium Channels
The voltage-dependent gating mechanism of KAT1 inward rectifier potassium channels was studied using single channel current recordings from Xenopus oocytes injected with KAT1 mRNA. The inward rectification properties of KAT1 result from an intrinsic gating mechanism in the KAT1 channel protein, not from pore block by an extrinsic cation species. KAT1 channels activate with hyperpolarizing poten...
متن کاملMode shift of the voltage sensors in Shaker K+ channels is caused by energetic coupling to the pore domain
The voltage sensors of voltage-gated ion channels undergo a conformational change upon depolarization of the membrane that leads to pore opening. This conformational change can be measured as gating currents and is thought to be transferred to the pore domain via an annealing of the covalent link between voltage sensor and pore (S4-S5 linker) and the C terminus of the pore domain (S6). Upon pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 47 شماره
صفحات -
تاریخ انتشار 2005